

Sequential Staudinger Ketene–Imine Cycloaddition, RCM Approach to Highly Rigid Macrocrocyclic Bisazetidinones

Yehia A. Ibrahim,* Talal F. Al-Azemi, and Mohamed D. Abd El-Halim Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

> yehiaai@kuc01.kuniv.edu.kw Received April 9, 2010

An efficient approach to highly rigid macrocyclic bisazetidinones with interesting structural feature was achieved via sequential Staudinger ketene—imine cycloaddition of *o*-allyloxyphenoxyketene and bis-arylidenediamines followed by RCM. The ketene—imine cycloaddition afforded the corresponding bis-*o*-allyloxyphenoxyazetidinones as the *cis-cis* diastereomers, exclusively obtained as a mixture of *cis-syn-cis* and *cis-anti-cis*. RCM of the latter using Grubbs' catalysts afforded good yields of the corresponding novel macrocyclic bisazetidinones. The *cis-anti-cis* bisazetidinones are readily identified by ¹H NMR using Eu(hfc)₃ chiral shift reagent. ¹H NMR indicated the high shielding effect of the aryl substituents on one of the *ortho*-H's of the condensed phenylene ring, and VT ¹H NMR indicates the highly restricted rotation of the aryl groups, thus offering a highly rigid system.

Introduction

Crown compounds, azacrown compounds, and crown ethers incorporating amide groups find many interesting applications in diverse fields of supramolecular chemistry.¹ During our recent interest in the synthesis of macrocyclic polyethers moiety, we and others successfully applied the ring-closing metathesis (RCM) technique to efficiently

4508 J. Org. Chem. 2010, 75, 4508–4513

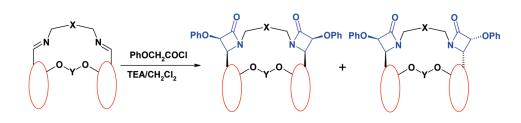
synthesize a large number of macrocycles of variable ring sizes.¹

The Staudinger [2 + 2] ketene—imine cycloaddition reaction is considered as one of the most important synthetic approaches to β -lactams (2-azetidinones), which have important applications in pharmaceutical and synthetic chemistry.²⁻⁴

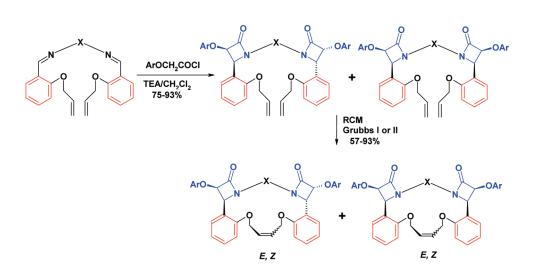
Published on Web 06/10/2010

DOI: 10.1021/jo100679d © 2010 American Chemical Society

 ^{(1) (}a) Ibrahim, Y. A.; Behbehani, H.; Ibrahim, M. R. Tetrahedron Lett.
 2002, 43, 4207–4210. (b) Behbehani, H.; Ibrahim, M. R.; Ibrahim, Y. A.
 Tetrahedron Lett. 2002, 43, 6421–6426. (c) Ibrahim, Y. A.; Behbehani, H.;
 Ibrahim, M. R.; Abrar, N. M. Tetrahedron Lett. 2002, 43, 6971–6974.
 (d) Ibrahim, Y. A.; Behbehani, H.; Ibrahim, M. R.; Malhas, R. N. Tetrahedron 2003, 59, 7273–7282. (e) Ibrahim, Y. A.; Behbehani, H.; Khalil, N. S.
 Tetrahedron 2004, 60, 8429–8436. (f) Ibrahim, Y. A.; Behbehani, H.; Khalil, N. S.
 Tetrahedron 2004, 60, 8429–8436. (f) Ibrahim, Y. A.; John, E. Tetrahedron 2006, 43–52. (h) Malhas, R. N.; Ibrahim, Y. A. Synthesis 2006, 3261–3269.


⁽²⁾ Staudinger, H. Liebigs Ann. Chem. 1907, 356, 51-123.

^{(3) (}a) Tidwell, T. T. Eur. J. Org. Chem. 2006, 563-568. (b) Fu, N.;
Tidwell, T. T. Tetrahedron 2008, 64, 10465-10496. (c) Xu, J. Arkivoc 2009,
No. iv, 21-44. (d) Jiao, L.; Zhang, Q. F.; Liang, Y.; Zhang, S. W.; Xu, J. X.
J. Org. Chem. 2006, 71, 815-818. (e) Wang, Y.; Liang, Y.; Jaoo, L.; Du, D-M;
Xu, J. X. J. Org. Chem. 2006, 71, 6983-6990. (f) Jiao, L.; Liang, Y.; Zhang,
Q.; Zhang, S.; Xu, J. Synthesis 2006, 659-665. (g) Jiao, L.; Liang, Y.; Xu, J. X.
J. Am. Chem. Soc. 2006, 128, 6060-6069. (h) Liang, Y.; Zhang, S. W.; Xu,
J. X. J. Org. Chem. 2005, 70, 334-337. (i) Lee, E. G.; Hodous, B. L.; Bergan,
E.; Shih, C.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 11586-11587.


⁽⁴⁾ Sierra, M. A.; Pellico, D.; Gómez-Gallego, M.; Mancheno, M. J.; Torres, R. J. Org. Chem. **2006**, 71, 8787–8793. and references therein.

JOC Article

SCHEME 1

SCHEME 2

This reaction has been used to construct macrocyclic bisazetidinone polyethers by the reaction of the appropriate ketene precursors with macrocyclic diimines (Scheme 1).^{4,5}

Recently, we reported the sequential application of Staudinger [2 + 2] ketene–imine cycloaddition followed by RCM to construct macrocyclic bisazetidinone polyethers (Scheme 2).⁶ Subsequently the same procedure has then been applied for the synthesis of macrocyclic bisazetidinone polyethers incorporating ferrocene moiety inside the macrocycles.⁷ Moreover, bis- β -lactams were macrocyclized via Cu-catalyzed alkyne–azide cycloadditions^{8a} or via M–C or M–N (M = Pd or Pt) bonds.^{8b}

The obtained macrocyclic bisazetidinones are potenial starting materials for the synthesis of highly functionalized macrocycles through the chemical transformation of the azetidinone ring moiety,⁴ thus leading to macrocyclic crown compounds containing suitable functionalities of potential applications in supramolecular chemistry. This includes the transformation to macrocyclic azacrown ethers, macrocyclic bisamides, and macrocyclic β -aminoacids.^{4,7}

Results and Discussion

In the present work we describe an alternative sequential application of Staudinger [2 + 2] ketene–imine cycloaddition followed by RCM reactions as a route to novel macrocyclic azacrown ethers incorporating the azetidinone ring

fused to the macrocycle through the 1,3-positions of the azetidinone ring (Scheme 3). Thus, treatment of N,N'-bisaryliden-1,2-ethanediamines **1a**, **2a**, **3a**, **4a**, and **5a** with *o*-allyloxyphenoxyacetyl chloride in CH₂Cl₂ in the presence of triethylamine gave a mixture of *cis-anti-cis* (*racemic*) **6a**, **7a**, **8a**, **9a**, and **10a** and *cis-syn-cis* (*meso*) **11a**, **12a**, **13a**, **14a**, and **15a** diastereomers. These stereoisomers were successfully separated by column chromatography. On the other hand, similar treatment of N,N'-bis-arylidene-3,6-dioxaoctane-1,8-diamines **1b**, **3b**, and **4b** gave inseparable mixtures of the corresponding *cis-anti-cis* (*racemic*) **6b**, **8b**, and **9b** and *cis-syn-cis* (*meso*) **11b**, **13b**, and **14b** diastereomers. Table 1 shows the diastereomeric ratio obtained and the characteristic ¹H and ¹³C NMR signals of these novel acyclic isomeric bisazetidinone derivatives.

RCM of **6a**–**15a** was succefully achieved with Grubbs' catalyst I to give a mixture of the corresponding E,Z isomers at the olefinic double bond, which were readily characterized from their ¹H and ¹³C NMR (Table 2, entries 2, 4, 6, 8, 10, 12, 14, 16, 18, 20). On the other hand RCM with Grubbs' catalyst II gave only the corresponding E isomers (Table 2, entries 1, 3, 5, 7, 9, 11, 13, 15, 17, 19). The E,Z isomers of the olefinic double bonds were readily assigned, and their ratios were determined from the ¹H NMR and ¹³C NMR spectra. The E isomers show the characteristic ¹³C signal of the OCH₂ (of the OCH₂CH= CHCH₂O) at frequency lower than that for the corresponding Z isomer (cf. the experimental data in Supporting Information).

Similar RCM results were obtained when the mixture of each of the enatiomers **6b**, **11b** and **8b**, **13b** and **9b**, **14b** were treated with either Grubbs' I or Grubbs' II catalysts. However, because of the complexity of the four products mixtures obtained in each case with Grubbs' I catalyst, results

⁽⁵⁾ Arumugam, N.; Raghunathan, R. Tetrahedron Lett. 2006, 47, 8855–8857. and references therein.

⁽⁶⁾ Ibrahim, Y. A.; Al-Azemi, T. F.; Abd El-Halim, M. D.; John, E. J. Org. Chem. 2009, 74, 4305–4310.

⁽⁷⁾ Sierra, M. A.; Fernandez, M. R.; Casarrubios, L.; Gallego, M. G.; Allen, C. P.; Mancheno, M. J. Dalton Trans. 2009, 8399–8405.

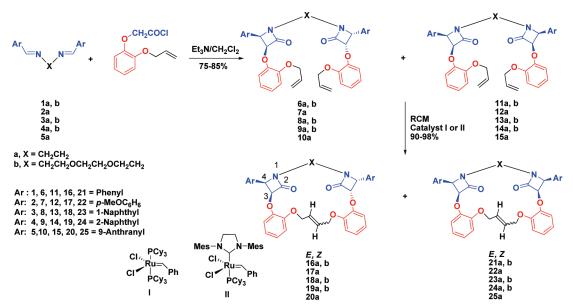


TABLE 1. Products 6–15 Obtained by the Reaction of *o*-Allyloxyphenoxyketene with $1-5^a$

entry	substrates	products	yield, ^b anti:syn	δ H3 (C3)	δ H4 (C4)
1	1a	6a	85%	5.44 (83.7)	5.20 (61.1)
		11a	47:53	5.26 (83.4)	4.77 (62.1)
2	2a	7a	80%	5.40 (83.6)	5.16 (60.8)
		12a	35:45	5.24 (83.4)	4.76 (61.6)
3	3a	8a	80%	5.71 (84.4)	6.08 (57.4)
		13a	50:50	5.03 (83.7)	5.51 (57.9)
4	4 a	9a	75%	5.52 (83.9)	5.39 (61.4)
		14a	44:56	5.28 (83.6)	4.93 (62.3)
5	5a	10a	75%	5.96 (85.9)	6.89 (58.1)
		15a	40:35	4.79 (84.9)	5.65 (58.2)
6	1b	6b	75%	5.47 (83.4)	5.00 (63.0)
		11b	49:51	5.45 (83.3)	4.98 (63.0)
7	3b	8b	80%	5.71 (83.9)	5.79 (59.1)
		13b	45:55	5.57 (83.9)	5.64 (59.1)
8	4b	9b	85%	5.48 (83.43)	5.11 (63.1)
		14b	34:66	5.44 (83.40)	5.08 (63.1)

^{*a*}Reaction conditions: substrate (1 mmol) in DCM (5 mL) was added to a solution of *o*-allyloxyphenoxyketene [prepared from *o*-allyloxyphenoxyacetyl chloride, (4 mmol)] at -78 °C and stirred overnight at room temperature (cf. the experimental data in Supporting Information). The crude product was separated (for entries 1-5) and purified as a mixture (for entries 6-8) by chromatography. ^{*b*}Yields were determined by ¹H NMR and agree with the isolated yields within $\pm 5\%$ (cf. the experimental data in Supporting Information).

obtained only from Grubbs' II catalyst were recorded in Table 3 and in the Experimental Section.

NMR of the Products. The *cis* stereochemistry of all of these new bis- β -lactams 6–15 and their corresponding macrocycles 16–25 were established on the basis of the azetidinones ³*J*(H3,H4) coupling constant of 4.4–4.9 Hz as

reported previously.^{6,8,9} Generally, the H-3 signal of the azetidinone ring appears at lower frequency than the H-4 signal in all of the present new acyclic and macrocyclic derivatives except in cases of 1-naphthyl and 9-anthracenyl derivatives where the opposite occurs (Table 1, entries 3, 5, 7; Table 2, entries 9–12, 17–20; Table 3, entry 2). This is clearly attributed to the more anisotropic effect of the 1-naphthyl and 9-anthracenyl substituents. All H-3 and H-4 signals have been assigned on the basis of their cross correlation with their respective carbon signals in HSQC-NMR experiments where the C-3 signal appears at $\delta = 83-87$ and the C-4 signal appears at $\delta = 59-64$.

The ¹H NMR spectra of the *anti* isomers 6a-10a and the corresponding syn isomers 11a-15a showed the diastereotopic NCH₂CH₂N proton signals at two δ values. The $\Delta\delta$ in the former are larger ($\Delta \delta \approx 1$ except for **10a** $\Delta \delta = 1.34$) than in the latter ($\Delta \delta \approx 0.6$ except for **15a** $\Delta \delta = 1.02$). Similarly, all anti macrocycles isomers 16a-20a whether E or Z showed the NCH₂CH₂N proton signals at two δ values with $\Delta \delta \approx 1.1$ except for **20a** with $\Delta \delta = 1.38$, 1.34 for the *E* and *Z* isomers, respectively. On the other hand, the corresponding macrocyclic syn isomers 21a-25a showed the NCH₂CH₂N proton signals at two δ values with $\Delta \delta \approx 0.34 - 0.7$ except for **25a** with $\Delta \delta = 1.30$, 1.38 for *E* and *Z* isomers, respectively. Although these findings are characteristic for the anti and syn isomers in the present study, they are opposite to what has been reported recently by Pellico et al.^{8a} In addition to our previous work⁶ this $\Delta \delta$ of the diastereotopic NCH₂ signals cannot be taken as a generalization for assigning the anti and syn bis-azetidinones. Additionally in all of the cis-anti-cis the two diastereotopic NCH₂ signals have significantly different appearance than the cis-syn-cis derivatives (cf. Figure 1 and ¹H NMR spectra in Supporting Information).

As reported previously,⁶ the chiral shift reagent Eu(hfc)₃ was used to confirm the assignment of the *cis-anti-cis* and *cis-syn-cis* isomers of compounds **6a** and **11a** from NMR spectral analysis. The two methylene CH₂N bridge and azetidinone H-3 and H-4 proton signals appear at δ 2.85,

^{(8) (}a) Pellico, D.; Gomez-Gallego, M.; Ramirez-Lopez, P.; Mancheno, M. J.; Sierra, M. A.; Torres, M. R. *Chem.—Eur. J.* 2010, *16*, 1592–1600.
(b) Pellico, D.; Gomez-Gallego, M.; Ramirez-Lopez, P.; Mancheno, M. J.; Sierra, M. A.; Torres, M. R. *Chem.—Eur. J.* 2009, *15*, 6940.

⁽⁹⁾ Singh, G. S.; D'hooghe, M.; De Kimpe, N. Azetidines, Azetines and Azetes: Monocyclic. In *Comprehensive Heterocyclic Chemistry III*; Katritzky, A. R., Ramsdem, C. A., Scriven, E. F. V., Eds.; Elsevier: Amsterdam, 2008; Vol. 2, pp 1–110.

 TABLE 2.
 RCM Products of 6a-15a with Grubbs' I and Grubbs' II

 Catalysts^a
 Catalysts

			δН3	(C3)	δ H4 (C4)		¹ H NMR of Z/E product ArH ^c	
	substrate	yield, ^b						
entry	product	Z:E ratio	Ζ	E	Ζ	Ε	Z	Ε
1	6a	97%		5.78		5.07		5.49
	16a	0:1		85.1		61.4		
2	6a	98%	5.41	5.78	5.05	5.07	5.86	5.49
	16a		85.6	85.1	61.3			6.00
3	11a	98%		5.77		4.98		6.29
	21a	0:1	5 (0	84.4	1.0.0	63.3	6.40	6.00
4	11a	98%	5.60	5.//	4.96	4.98	6.48	6.29
5	21a	1:7.3	84.3	84.4 5.72	63.2	63.3		5.63
2	7a 17d	98% 0:1		5.72 85.0		5.01 60.9		5.63
6	1/d 7a		5 20	85.0 5.72	4 0.0	5.01	5.94	5.63
0	/a 17d	1:2.7	2.39	3.72 85.0	4.98	5.01	5.94	5.05
7	17u 12a							6.35
,	12a 22a	97% 0:1 90%		843		62.8		0.55
8	12a	90%	5 54	5 73	4 93	4 97	6 50	6.35
0	22a	1:3.0	84.2	84.3	62.7	62.8	0.50	0.55
9	8a	92%	01.2	5 07		6.11		4.95
	18a	0:1		85.8		58.5		1.95
10	8a		5.76	5.97	5.94	6.11	5.43	4.95
	18a	1:2.8	86.2	85.8	58.2	58.5	5.43	
11	13a	97%		5.84		6.05		5.92
	23a	97% 0:1 98%		85.1		59.70		
12	13a	98%	5.82	5.84	5.90	6.05	6.07	5.92
	23a	1:4.3	85.0	85.1	59.74	59.70		
13	9a	96%		5.89		5.26		5.43
	19a	0:1		85.4		63.5		
14	9a	97% 1:3.8	5.53	5.89	5.23	5.26	5.84	5.43
	19a	1:3.8	85.8	85.4	61.55	61.62		
15	14a	1:3.8 97% 0:1		5.86		5.19		6.26
	24a	0:1		84.71		63.5		
16	14a	97%	5.68				6.47	6.26
	24a	1:6.7	84.74					
17	10a	98%		6.33		6.66		5.01
	20a	0:1		86.8		59.4		
18	10a			6.33	6.66		5.54	5.01
10	20a	1:2.6	87.1		58.9			6.05
19	15a	95%		6.22		6.58		6.05
20	25a	0:1 95%	()5	86.5	(()	60.6	(02	6.05
20	15a	95%	0.33	0.22	0.08	0.58	6.03	6.05
	25a	1:6.6	80.8	80.5	39.4	00.0		

^{*a*}Reaction conditions: substrate (0.03 mmol) in DCM (10 mL) and Grubbs' II (1.2 mg, 5 mol % for entries 1, 3, 5, 7, 9, 11, 13, 15, 17, 19) or Grubbs' I (1.3 mg, 5 mol % for entries 2, 4, 6, 8, 10, 12, 14, 16, 18, 20) were heated under reflux for 1 h. ^{*b*}Identified from their characteristic ¹H NMR; with Grubbs' II, only the *E* isomers were obtained in 90–98% yield. Yields were determined by ¹H NMR and agree with the isolated yields within $\pm 5\%$ (cf. the experimental data in Supporting Information). ^cThis ArH is the highest frequency proton signals ortho to the azetidinone ring of the condensed benzene ring.

3.84, 5.20, 5.44, respectively, in the ¹H NMR spectrum of the *anti* isomer **6a** (see Supporting Information). After the addition of the chiral shift reagent the two signals of the diastereotopic methylene (CH₂N) bridge and azetidinone H-3 and H-4 proton signals shifted to lower frequency, and each proton signal splits resulting in eight signals at δ 2.97, 3.02, 4.01, 4.09, 5.47, 5.45, 5.71, and 5.77, which confirms that **6a** is a racemic mixture. As for compound **11a**, after the addition of the chiral shift reagent the two H-3 and H-4 proton signals of the azetidinone appear at δ 4.77 and 5.26 shifted to lower frequency without splitting, which indicates that **11a** is the *meso* isomer.

Another significant difference between the *syn* and the *anti* isomers is that one of the aromatic proton signals appears at

 TABLE 3.
 RCM Product of 6b, 11b, 8b, 13b, 9b, 14b with Grubbs' II Catalyst^a

			NMR of products		
substrate (<i>anti:syn</i>)	pro- duct	yield, ^b anti:syn	δ H3 (C3)	δ H4 (C4)	$\delta OCH_2 CH =$
6b , 11b (49:51)	16b	95%, 49:51	5.07	5.48	5.86
			84.5	63.2	
	21b		5.07	5.51	5.85
			84.3	63.1	
8b , 13b (45:55)	18b	90%, 47:53	5.84	5.93	5.88
			85.1	59.8	
	23b		5.90	5.93	6.00
			84.8	59.1	
9b , 14b (34:66)	19b	80%, 53:47	5.25	5.55	5.56
			83.8	63.3	
	24b		5.28	5.60	5.68
			84.8	63.5	
	(<i>anti:syn</i>) 6b, 11b (49:51) 8b, 13b (45:55)	(anti:syn) duct 6b, 11b (49:51) 16b 21b 8b, 13b (45:55) 18b 23b 9b, 14b (34:66) 19b	(anti:syn) duct anti:syn 6b, 11b (49:51) 16b 95%, 49:51 21b 21b 8b, 13b (45:55) 18b 90%, 47:53 23b 23b 9b, 14b (34:66) 19b 80%, 53:47	substrate (anti:syn) pro- duct yield, ^b anti:syn δ H3 (C3) 6b, 11b (49:51) 16b 95%, 49:51 5.07 8b, 13b (45:55) 18b 90%, 47:53 5.84 8b, 13b (45:55) 18b 90%, 47:53 5.84 9b, 14b (34:66) 19b 80%, 53:47 5.25 83.8 24b 5.28	substrate (anti:syn) pro- duct yield, ^b anti:syn δ H3 δ H4 6b, 11b (49:51) 16b 95%, 49:51 5.07 5.48 21b 5.07 5.51 8b, 13b (45:55) 18b 90%, 47:53 5.84 5.93 23b 5.93 84.8 59.1 9b, 14b (34:66) 19b 80%, 53:47 5.25 5.55 83.8 63.3 24b 5.28 5.00

^{*a*}Reaction conditions: substrate (0.03 mmol) in DCM (10 mL) and Grubbs' II (1.2 mg, 5 mol %) were heated under reflux for 1 h. ^{*b*}Only *E* isomers were formed under these conditions as identified from their characteristic ¹H NMR. Yields were determined by ¹H NMR and agree with the isolated yields within $\pm 5\%$ (cf. the experimental data in Supporting Information).

high frequency at δ 5.49 for the *anti* isomer **16a** and shows at δ 6.29 for the syn isomer **21a** (See Figure 1). This is due to the diamagnetic anisotropic shielding caused by the phenyl ring alignment to the aromatic proton in the macrocyclic system of the anti isomer 16a. NOE-difference spectroscopy confirmed further the assignment of this high-frequency aromatic proton signal. Thus, irradiation of this proton enhanced the two ortho phenyl proton signals in compounds E-16a and E-17a (cf. Supporting Information). Replacing the phenyl ring in the azetidinone system by a 1-naphthyl or 9-anthracenyl ring in anti isomers 18a, 20a increases the diamagnetic anisotropic shielding effect, which resulted in further shielding of the aromatic proton to δ 4.95, 5.01, respectively (Table 2, entries 9, 17, Figure 1). The 2-naphthyl derivatives do not affect markedly the position of this high frequency aromatic proton signal.

Interestingly, the aromatic proton signal of the macrocyclic anti Z isomers are shifted to lower frequency compared to their anti E isomer counterparts (Table 2). Apparently these systems are highly rigid as evidenced from the ¹H NMR experiments preformed at different temperatures in pyridine- d_6 for the *anti* isomer **16a** (see Supporting Information). At 298 K the aromatic proton signal in the macrocyclic system shows at δ 5.87, upon increasing the temperature to 378.4 K the aromatic proton signal shifted to lower frequency at δ 6.09. When the temperature was lowered to 232.5 K, the proton signal shifted to high frequency at δ 5.69. The differences in aromatic proton signal shift of approximately ± 0.2 ppm from the experiment carried out at room temperature indicate that there is no significant conformational rearrangement in the macrocyclic system. It also indicates that there is some flexibility in the phenyl ring rotation, which may be only swinging. At higher temperature this swinging has a larger amplitude so that, on average, its position for an effective shielding is somewhat diluted.

On subjecting the anthracenyl derivative E-20a to cycloaddition reaction with *N*-phenylmaleimide, an almost quantitative yield of the corresponding cycloadduct 26 was obtained. The ¹H NMR of 26 shows the high frequency

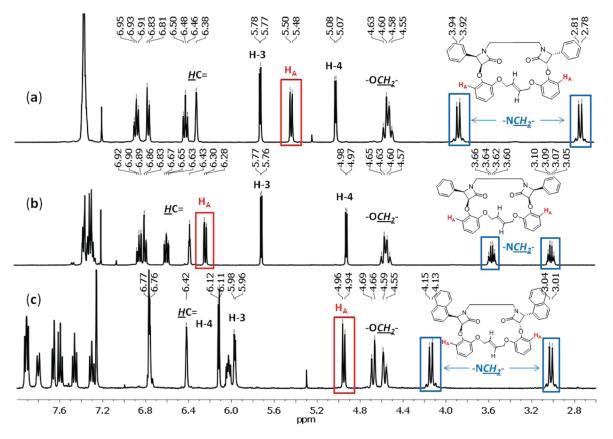



FIGURE 1. ¹H NMR (400 MHz, CDCl₃) spectra: (a) *cis-anti-cis* isomer of compound 16a; (b) *cis-syn-cis* isomer of compound 21a; (c) *cis-anti-cis* isomer of compound 18a.

aromatic proton signal at δ 5.16, which has not been affected significantly by such structural modification.

Conclusion

The present study offers alternative synthetic routes toward macrocyclic azacrown ethers condensed with bisazetidinones via bridgehead (ring junction) nitrogens through the sequential application of Staudinger [2 + 2] ketene—imine cycloaddition followed by RCM reactions in an overall yield of these two steps amounting to 83%. The new macrocyclic bisazetidinones were proved to be conformationally rigid systems and also are not expected to be efficiently otherwise accessible using other synthetic approaches.

Experimental Section

The starting compounds **1a**, ¹⁰ **2a**, ¹⁰ **3a**, ¹¹ **4a**, ¹¹ **5a**, ¹² **1b**, ¹³ **3b**, ¹³ **4b**, ¹⁴ **and** *o*-allyloxyphenol^{1e} were prepared as reported in the

literature. Cycloaddition of *N*-phenylmaleimide and *E*-20a were done following literature procedure.¹⁵

Synthesis of β -Lactams 6–15 by Staudinger Reaction: General Procedure. A solution of *o*-allyloxyphenoxyacetyl chloride (4 mmol) in dry CH₂Cl₂ (5 mL) was purged with nitrogen and cooled to -78 °C, and then a solution of Et₃N (8 mmol) in dry CH₂Cl₂ (5 mL) was added dropwise with a syringe. The mixture was stirred for 30 min, and a solution of the corresponding diimine 1–5 (1 mmol) in dry CH₂Cl₂ (5 mL) was added dropwise over a period of 2 h. The reaction mixture was then stirred overnight at room temperature. The organic layer was washed with water and Na₂CO₃ solution (10%) until no effervescence and then dried over anhydrous Na₂SO₄. The solvent was removed in vacuo. The crude product was separated or purified by chromatography. All *anti* products 6a, 7a, 8a, 9a, and 10a were readily separated from their corresponding *syn* isomers 11a, 12a, 13a, 14a, and 15a.

Compound 6a. Yield 0.30 g (40%); yellow oil, $R_f = 0.36$ (pet. ether/EtOAc 2:1). MS: m/z = 616 (M⁺, 5%). IR: 3065, 3033, 2973, 2925, 1755, 1499, 1455, 1406, 1354, 1256, 1209, 747, 700. ¹H NMR (CDCl₃): δ 2.85 (d, 2H, J 11.0), 3.84 (d, 2H, J 11.0), 4.30 (dt, 4H, J 5.2, 1.5), 5.13 (ddd, 2H, J 10.5, 2.8, 1.5), 5.20 (d, 2H, J 4.8), 5.22 (ddd, 2H, J 17.2, 3.2, 1.5), 5.44 (d, 2H, J 4.8), 5.88 (m, 2H), 6.74 (m, 6H), 6.83 (m, 2H), 7.31 (m, 6H), 7.38 (dd, 4H, J 8.0, 1.6). ¹³C NMR (CDCl₃): δ 37.2, 61.1, 69.8, 83.7, 115.2, 116.9, 117.1, 121.2, 122.8, 128.3, 128.4, 128.5, 133.1, 133.2,

⁽¹⁰⁾ Karupaiyan, K.; Puranik, V. G.; Deshmukh, A. R. A. S.; Bhawal, B. M. *Tetrahedron* **2000**, *56*, 8555–8560.

⁽¹¹⁾ Liu, H.; Zhang, H.-L.; Wang, S.-J.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. *Tetrahedron: Asymmetry* **2005**, *16*, 2901–2907.

⁽¹²⁾ Grigoras, M.; Sava, M.; Colotin, G.; Simionescu, C. I. J. Appl. Polym. Sci. 2008, 107, 846–853.

⁽¹³⁾ Kise, N.; Oike, H.; Okazaki, E.; Yoshimoto, M.; Shono, T. J. Org. Chem. 1995, 60, 3980–3992.
(14) Bollini, M.; Casal, J. J.; Bruno, A. M. Bioorg. Med. Chem. 2008, 16,

⁽¹⁴⁾ Bollini, M.; Casal, J. J.; Bruno, A. M. *Bloorg. Mea. Chem.* 2008, 10 8003–8010.

⁽¹⁵⁾ Atheron, J. C. C.; Jones, S. Tetrahedron 2003, 59, 9039–9057.

147.1, 148.4, 167.3. ¹⁵N NMR (CDCl₃): δ 139.6. HRMS = 616.2565 (C₃₈H₃₆N₂O₆ requires 616.2567).

Compound 11a. Yield 0.33 g (45%); colorless crystals, mp 149 °C, $R_f = 0.23$ (pet. Ether/EtOAc 2:1). MS: m/z = 616 (M⁺, 5%). IR: 3065, 3034, 2984, 2922, 2860, 1759, 1500, 1455, 1407, 1357, 1258, 1212, 744, 702. ¹H NMR (CDCl₃): δ 3.10 (m 2H), 3.71 (m, 2H), 4.30 (dt, 4H, J 5.1, 1.6), 4.77 (d, 2H, J 4.6), 5.15 (ddd, 2H, J 10.6, 2.8, 1.6), 5.21 (ddd, 2H, J 17.2, 3.2, 1.6), 5.26 (d, 2H, J 4.6), 5.87 (m, 2H), 6.66 (dd, 2H, J 8.5, 1.6), 6.75 (m, 4H), 6.84 (dt, 2H, J 1.5, 7.2), 7.34 (m, 10H). ¹³C NMR (CDCl₃): δ 37.9, 62.1, 70.0, 83.4, 115.4, 117.1, 117.2, 121.3, 123.0, 128.5, 128.6, 128.9, 133.0, 133.3, 147.2, 148.5, 166.4. ¹⁵N NMR (CDCl₃): δ 139.3. HRMS = 616.2567 (C₃₈H₃₆N₂O₆ requires 616.2567).

General Procedures of the RCM. (Condition A) To a solution of each of the appropriate β -lactams 6–15 (0.03 mmol) in DCM (10 mL) was added Grubb's catalyst II (1.2 mg, 5 mol %). The reaction mixture was heated under reflux for 1 h, the solvent was removed in vacuo, and the product was purified by column chromatography with eluent DCM/pet. ether (60–80)/EtOAc to give the corresponding *E* isomers 16–25. (Condition B) To a solution of each of the appropriate β -lactams 6–15 (0.03 mmol) in DCM (10 mL) was added Grubb's catalyst I (1.2 mg, 5 mol %). The reaction mixture was heated under reflux for 1 h, the solvent was removed in vacuo, and the product was purified by column chromatography with eluent DCM/pet. ether (60–80)/EtOAc to give mixture of the coresponding *E* and *Z* isomer. ¹H NMR and ¹³C NMR data of the *Z* isomer were extracted from the mixed spectra by comparison with the pure *E* isomer.

Compound 16a-*E*. Yield 0.57 g (97%) (Condition A), 0.48 g (83%) (Condition B), colorless oil, $R_f = 0.41$ (DCM/pet. ether/ EtOAc 1:1:1). MS: m/z = 588 (M⁺, 25%). HRMS = 588.2253 (C₃₆H₃₂N₂O₆ requires 588.2254). IR: 3061, 3029, 2926, 2852, 1764, 1751, 1597, 1496, 1453, 1410, 1257, 1213, 1114, 1040, 745, 700. ¹H NMR (CDCl₃): δ 2.80 (d, 2H, *J* 11.2), 3.93 (d, 2H, *J* 11.2), 4.56 (d, 2H, *J* 10.8), 4.61 (d, 2H, *J* 10.8), 5.07 (d, 2H, *J* 4.5), 5.49 (dd, 2H, *J* 7.9, 1.6), 5.78 (d, 2H, *J* 4.5), 6.38 (t, 2H, *J* 2.4), 6.48 (td, 2H, *J* 7.7, 1.4), 6.83 (dd, 2H, 8.1, 1.3), 6.93 (td, 2H, *J* 7.6, 1.6), 7.43 (m, 10H). ¹³C NMR (CDCl₃): δ 37.4, 61.4, 67.6, 85.1, 112.4, 120.4, 122.9, 124.8, 127.4, 128.5, 128.7(2C), 134.2, 145.1, 150.4, 168.0. ¹⁵N NMR (CDCl₃): δ 138.5.

Compound 16a-Z. Formed in 17% as mixture with **4a-E** (Condition B), ¹H NMR (CDCl₃): δ 2.78 (d, 2H, *J* 10.8), 3.88

(d, 2H, *J* 10.8), 4.70 (d, 2H, *J* 9.6), 4.74 (d, 2H, *J* 9.6), 5.05 (d, 2H, *J* 4.6), 5.41 (d, 2H, *J* 4.6), 5.86 (dd, 2H, *J* 7.8, 1.6), 6.22 (t, 2H, *J* 4.7), 6.58 (td, 2H, *J* 7.6, 1.3), 6.90 (dd, 2H, *J* 8.0, 1.3), 6.98 (td, 2H, *J* 7.8, 1.6), 7.41 (m, 10H). ¹³C NMR (CDCl₃): δ 36.8, 61.3, 62.2, 85.6, 112.6, 120.7, 122.8, 124.9, 128.2, 128.3, 128.5, 128.7, 131.2, 146.2, 150.0, 167.7.

Compound 21a-*E*. Yield 0.58 g (98%) (Condition A), 0.52 g (88%) (Condition B), colorless oil, $R_f = 0.46$ (DCM/pet. ether/ EtOAc 1:1:1). MS: m/z = 588 (M⁺, 25%). HRMS = 588.2254 (C₃₆H₃₂N₂O₆ requires 588.2254). IR: 3064, 2957, 2928, 2860, 1762, 1729, 1497, 1460, 1381, 1272, 1124, 1072, 745, 702. ¹H NMR (CDCl₃): δ 3.10 (m, 2H), 3.63 (m, 2H), 4.63 (m, 4H), 4.98 (d, 2H, *J* 4.6), 5.77 (d, 2H, *J* 4.6), 6.29 (dd, 2H, *J* 8.0, 1.5), 6.44 (t, 2H, *J* 2.5), 6.65 (td, 2H, *J* 7.7, 1.5), 6.85 (dd, 2H, *J* 8.2, 1.7), 6.90 (td, 2H, *J* 8.0, 1.5), 7.31–7.38 (m, 6H), 7.42 (m, 4H). ¹³C NMR (CDCl₃): δ 38.9, 63.3, 68.4, 84.4, 113.8, 120.1, 121.1, 123.7, 128.1, 128.4, 128.7, 128.8, 133.7, 146.4, 149.2, 167.3. ¹⁵N NMR (CDCl₃): δ 138.6.

Compound 21a-Z. Formed in 12% with **21a-***E* (Condition **B**), ¹H NMR (CDCl₃): δ 3.16 (m, 2H), 3.50 (m, 2H), 4.73 (dd, 2H, *J* 11.0, 4.3), 4.76 (dd, 2H, *J* 11.0, 4.3), 4.96 (d, 2H, *J* 4.8), 5.60 (d, 2H, *J* 4.8), 6.18 (t, 2H, *J* 4.3), 6.48 (dd, 2H, *J* 8.2, 1.6), 6.71 (td, 2H, *J* 7.8, 2.0), 6.90 (dd, 2H, *J* 8.0, 1.5), 6.92 (td, 2H, *J* 7.8, 2.0), 7.31–7.38 (m, 6H), 7.42 (m, 4H). ¹³C NMR (CDCl₃): δ 38.8, 63.2, 64.4, 84.3, 114.8, 119.8, 121.5, 123.8, 128.3, 128.5, 128.8, 128.9, 134.3, 147.1, 149.2, 167.0.

Acknowledgment. The support of the University of Kuwait received through research grant no. SC02/07 and the facilities of ANALAB and SAF (grants no. GS01/01, GS01/ 03, GS03/01) are gratefully acknowledged.

Supporting Information Available: General experimental methods and full experimental details for all reactions; characterization data for all products; ¹H NMR (600 MHz, CDCl₃) spectra of *cis-anti-cis* compound **6a** (*racemic*) and *cis-syn-cis* compound **11a** (*meso*) (a) before addition of chiral shift reagent, Eu(hfc)₃ and (b) after addition of chiral shift reagent, Eu(hfc)₃; ¹H, ¹³C NMR and ¹⁵N full spectral assignment of **6a** and **11a** and copies of ¹H NMR and ¹³C NMR spectra and some representative 2D NMR. This material is available free of charge via the Internet at http://pubs.acs.org.